Unit C - Practical 3

Experimental determination of the acceleration of gravity using a simple pendulum

Safety

Wear safety glasses/goggles.

Apparatus and materials

- stand and clamp
- cotton thread ($\sim 1.1 \mathrm{~m}$)
- rubber stopper with hole to fit the thread
- small brass or lead pendulum bob
- stopwatch
- metre rule
- protractor
- fiducial mark

Introduction

In this practical, you will use a simple pendulum to determine the value of acceleration of gravity g (or acceleration of free fall). This is the acceleration of a falling object when only the gravitational pull of the Earth acts on it . The value of g is $9.8(1) \mathrm{ms}^{-2}$; there might a variation in the second decimal place of this value depending on the location.

A simple pendulum is one with small point mass suspended by a weightless string. If it is displaced from its equilibrium position for a small angle $\vartheta\left(\vartheta<10^{\circ}\right)$ then the pendulum will perform simple harmonic motion (SHM). The period of this motion is given by:

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

where T = period of the SHM, $L=$ length of the pendulum and $g=$ the acceleration of gravity.
You are going to measure the time period of the pendulum for various lengths of string then use a graphical method to find g.

The equation above can be written as:

$$
T^{2}=\frac{4 \pi^{2}}{g} L
$$

so that the gradient of a T^{2} vs L graph is equal to:

$$
\frac{4 \pi^{2}}{g}
$$

Procedure

1 Pass the cotton thread through the hole of the rubber stopper. The length of the pendulum L is measured from the point where the thread comes out of the rubber stopper up to the centre of the pendulum bob.

2 Secure the rubber stopper with the clamp and position the pendulum so that it is overhanging the bench.

3 Adjust the length of the pendulum by drawing the thread through the stopper so that L is 1 m .
4 Give a small displacement to the pendulum. You can use a protractor to ensure that the angular displacement, ϑ, is less than 10°.

5 Measure the time it takes for the pendulum to complete 20 full oscillations.
(Note: the time it takes the pendulum bob from the equilibrium position to the next equilibrium position is half a period. One full period is the time it takes the bob to return to the equilibrium position from the same side. Use of a fiducial mark can help you identify and narrow down the time the bob passes through the equilibrium position.)

6 Repeat four more times for this pendulum length.
7 Record your measurements in an appropriate table.

Raw data table

Pendulum length,$\begin{gathered} L / m \\ \pm \ldots \end{gathered}$	Time for 20 full oscillations / s \pm. . .				
	\#1	\#2	\#3	\#4	\#5

8 Repeat the process (steps 4-7) for pendulum lengths $0.90 \mathrm{~m}, 0.80 \mathrm{~m}, 0.70 \mathrm{~m}$ and 0.60 m .
9 For each pendulum length calculate:
a the average time for 20 oscillations and the uncertainty of repeated measurements
b the period of one oscillation and the relevant uncertainty
c the square of the period and the relevant uncertainty.
Record these calculations in a separate table.

Processed data table

Pendulum length, L / m	Average time for 20 oscillations $\pm \ldots$	Uncertainty from repeated measurements of t / s	Period, T / s	Uncertainty of T / s^{2}	T^{2} / s^{2}	Uncertainty of T^{2} / s^{2}

10 Plot a graph of the square of the period, T^{2}, against pendulum length, L. Use the values of uncertainty of T^{2} to draw error bars.

11 Draw best-fit line for your points and calculate its gradient.
12 From the value of the gradient, calculate the experimental value of $g(=2 \times$ gradient $)$.
13 Determine the gradient uncertainty and use it to calculate the uncertainty of the experimental value of g.

Questions

1 Is there another way of plotting your data in a linear graph so you could determine the value of g from the gradient? In what other way could you rearrange the equation $T=2 \pi \sqrt{\frac{L}{g}}$ to allow you to do this?

2 How would performing this experiment on the Moon affect your measurements and results?

